Mixed multilayered vertical heterostructures utilizing strained monolayer WS2.
نویسندگان
چکیده
Creating alternating layers of 2D materials forms vertical heterostructures with diverse electronic and opto-electronic properties. Monolayer WS2 grown by chemical vapour deposition can have inherent strain due to interactions with the substrate. The strain modifies the band structure and properties of monolayer WS2 and can be exploited in a wide range of applications. We demonstrate a non-aqueous transfer method for creating vertical stacks of mixed 2D layers containing a strained monolayer of WS2, with Boron Nitride and Graphene. The 2D materials are all grown by CVD, enabling large area vertical heterostructures to be formed. WS2 monolayers grown by CVD directly on Si substrates with SiO2 surface are easily washed off by water and this makes aqueous based transfer methods challenging for creating vertical stacks on the growth substrate. 2D hexagonal Boron Nitride films are used to provide an insulating layer that limits interactions with a top graphene layer and preserve the strong photoluminescence from the WS2. This transfer method is suitable for layer by layer control of 2D material vertical stacks and is shown to be possible for all CVD grown samples, which opens up pathways for the rapid large scale fabrication of vertical heterostructure systems with atomic thickness depth control and large area coverage.
منابع مشابه
Vertical and in-plane heterostructures from WS2/MoS2 monolayers.
Layer-by-layer stacking or lateral interfacing of atomic monolayers has opened up unprecedented opportunities to engineer two-dimensional heteromaterials. Fabrication of such artificial heterostructures with atomically clean and sharp interfaces, however, is challenging. Here, we report a one-step growth strategy for the creation of high-quality vertically stacked as well as in-plane interconne...
متن کاملLarge-area synthesis of high-quality and uniform monolayer WS2 on reusable Au foils
Large-area monolayer WS2 is a desirable material for applications in next-generation electronics and optoelectronics. However, the chemical vapour deposition (CVD) with rigid and inert substrates for large-area sample growth suffers from a non-uniform number of layers, small domain size and many defects, and is not compatible with the fabrication process of flexible devices. Here we report the ...
متن کاملElastic properties of chemical-vapor-deposited monolayer MoS2, WS2, and their bilayer heterostructures.
Elastic properties of materials are an important factor in their integration in applications. Chemical vapor deposited (CVD) monolayer semiconductors are proposed as key components in industrial-scale flexible devices and building blocks of two-dimensional (2D) van der Waals heterostructures. However, their mechanical and elastic properties have not been fully characterized. Here we report high...
متن کاملTightly Bound Trions in Transition Metal Dichalcogenide Heterostructures.
We report the observation of trions at room temperature in a van der Waals heterostructure composed of MoSe2 and WS2 monolayers. These trions are formed by excitons excited in the WS2 layer and electrons transferred from the MoSe2 layer. Recombination of trions results in a peak in the photoluminescence spectra, which is absent in monolayer WS2 that is not in contact with MoSe2. The trion origi...
متن کاملvan der Waals trilayers and superlattices: modification of electronic structures of MoS2 by intercalation.
We perform a comprehensive first-principles study of the electronic properties of van der Waals (vdW) trilayers via intercalating a two-dimensional (2D) monolayer (ML = BN, MoSe2, WS2, or WSe2) between a MoS2 bilayer to form various MoS2/ML/MoS2 sandwich trilayers. We find that the BN monolayer is the most effective sheet to decouple the interlayer vdW coupling of the MoS2 bilayer, and the resu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nanoscale
دوره 8 5 شماره
صفحات -
تاریخ انتشار 2016